

LIQUID SOFTWARE
How to Achieve Trusted Continuous Updates

in the DevOps World

Fred Simon, Yoav Landman, Baruch Sadogursky

First published in the United States © 2018 by JFrog Ltd.

All rights reserved.

No part of this book may be reproduced in any way including written,
electronic, recording, or photocopying, without written permission of
the authors. Brief quotations embodied in critical articles or reviews
and pages where permission is specifically granted by the publisher or
author are exceptions.

Although every precaution has been taken to verify the accuracy of
the information contained herein, the authors assume no
responsibility and no liability for any errors or omissions in the
information herein. No liability is assumed for damages that may
result from the use of information contained within.

Title: Liquid Software

ISBN: 13: 978-1981855728

Subtitle: How to Achieve Trusted Continuous Updates in the DevOps World

Authors: Fred Simon, Yoav Landman, Baruch Sadogursky

To contact the authors or the copyright holder,
please send an email to LSbook@jfrog.com

Liquid Software is dedicated to everyone who has

ever wished machines would work for us,
instead of the other way around.

Acknowledgements
This book has been a journey for us. A journey that explored the
present and looked into what we believe the software industry will
look like in the not too distant future. A journey that has forced us
to plumb the depths of our experience as we brainstormed
together to shape our thoughts into a coherent vision.

Among those who joined us on the journey, we would particularly
like to thank: Shlomi Ben Haim – for his total support of our vision
for Liquid Software; Kit Merker – for his thorough review of the
texts and thought provoking, insightful comments; Rami Honig and
Shani Levy – for paying attention to every detail, while tirelessly
driving this work to completion; and Jody Ben-David and Steve
Spencer of J-R Research – for their invaluable contributions to
getting our thoughts and vision down on paper.

THE END
We’d like to tell you that we’re software soothsayers,

capable of predicting with pinpoint accuracy where the
industry as a whole will be ten years from now. We’d love to
say that the liquid software revolution of continuous
updates with zero downtime will lead to ponies, rainbows,
and Happy Ever Afters for everyone. Of course, we can’t do
that.

We do know, however, that breakthroughs can and do
occur. The kind that radically change our perceptions of the
possible. The kind that fundamentally alter what we
manufacture and consume. We’re confident that the
adoption of continuous updates will be that transformative.
It will accelerate with the rise of cloud computing and the
Internet of Things, as those and other technologies will
demand it. The new normal that is still evolving includes:
anywhere, anytime, always running, fully interconnected,
transparent, cross-platform computing. People want every
software-driven thing to seamlessly integrate with all other
software-driven things.

Software already runs practically everything that keeps
modern society functioning. There is, and will continue to be,
demand for more software, and for software that is ever
more responsive and versatile. As software becomes more
complex, more mistakes will be made. Updates will need to
occur with greater regularity, whether they are new
functionalities or patches. The only practical way to
accommodate these rising and accelerating demands is to
make software more liquid.

Liquefaction also makes sense in terms of user psychology
and preference. Our greatest digital achievements happen
when average users don’t see or concern themselves with the
inner mechanics of their software-powered devices. All the
engineering ingenuity and prowess stays behind the curtain

L I Q U I D S O F T W A R E

2

in service of easy, intuitive operations. Every time we
eliminate a confusing or irritating technical procedure, while
delivering more and better functionality, everyone’s a
winner.

Consider this tremendously powerful argument in favor
of liquid software: Spectre. Publicly disclosed in January 2018,
Spectre is a vulnerability that affects microprocessors that
perform branch prediction. It fools computer and device
applications into accessing arbitrary sectors of their memory
space. This gives attackers the ability to read that memory
and potentially obtain sensitive data. It’s extremely
pernicious, and its impacts are far-reaching. All current CPU
architectures are vulnerable! Darkest of all, there’s no
protection against it. Spectre-based exploits are only
discoverable after they’ve been applied and the damage has
been done. That’s the kind of five-alarm fire that demands
rapid response. Continuous updates are currently the
quickest and best way to solve the problem –securely, and
without incurring downtime.

Barriers to the acceptance and implementation of liquid
software are multi-faceted – the most significant being
developers’ unfamiliarity with continuous update
methodologies and the DevOps practices that we believe are
fundamental to ensuring success. Even those who do have
some knowledge of these matters have concerns. Everyone
in the industry would like to provide updates with greater
speed, flexibility, and transparency. So, conceptually, liquid
software scores big points. The issue is how to achieve these
goals and deliver software that’s secure and able to maintain
high levels of uninterrupted productivity. Do we keep nursing
along legacies, or do we become the pioneers of innovation?

Blazing new trails is in the nature of things. These are next
generation software ideas. And new generations are often
prepared to work in fundamentally different ways than those
that have preceded them. They dream of things that never

The End

3

were. Their motto is: If it ain’t broke, break it! That’s how new
paradigms are born.

Let the revolution begin!

Fred Simon
Yoav Landman
Baruch Sadogursky

May 2018

CHAPTER 1:
THE ROAD TO DISRUPTION

“Learning and innovation go hand in hand.
The arrogance of success is to think that what you did

yesterday will be sufficient for tomorrow.”
– William G. Pollard, physicist

Chapt er 1 : The R oa d to D is ru pt io n

7

Not Your Father’s Software Release
Changes in the ways software, and software updates, are

conceived, developed, and deployed – and in the nature of
how software operates – are changing the way R&D works.
Continuous improvement is the goal. To achieve this, the era
of big releases is coming to an end.

Continuous improvement is not only about continuous
development and deployment of software. It is an
adjustment to how the marketplace operates. For the past
several decades, software has been sold as a commodity, or
a good. A customer would pay a price to own a license for a
piece of software or a software package. Revenue generated
would be immediately transactional, with customers paying
directly to acquire it. The marketplace is shifting, and it will
continue to shift away from this model toward one in which
software consumption is fluid and revenues are generated
not as one-time payments, but as a constant stream, as users
access a software service. This is particularly significant for
newer software vendors. If large upfront sums of cash are no
longer secured through big major releases, it becomes more
difficult to set aside necessary sums for personnel-heavy and
capital-intensive research and development (R&D) and
quality assurance (QA). The push, then, is toward continuous
improvement that can coexist alongside development.

This concept is not to be confused with continuous
deployment, which is usually associated with installing new
versions to runtimes in data centers and production systems
that are strictly under a given company’s control. In that
environment, it is usually taken for granted that each
company will have a firm grasp and understanding of the
runtimes to which deployments are being pushed.
Continuous updating that produces continual improvement
is the rational expansion of this approach. This means
establishing the reliable and secure manner by which

L I Q U I D S O F T W A R E

8

companies handle runtimes that they can push updates to, or
pull updates from. It’s a paradigm shift that’s already
underway.

This radical, yet highly logical response to the challenges
of our increasingly software-driven world is the liquid
software revolution.

Liquid Software?
In the traditional software scenario, an update is

developed, delivered, and installed as an individual stand-
alone item. It arrives as a neat little (or big) file which
thousands – or even millions – of users open, and voila –

Chapt er 1 : The R oa d to D is ru pt io n

9

there’s the update. Continuous, fluid (liquid) delivery and
deployment of updates, on the other hand, is like the
constant, unending flow of a stream or river. It includes the
monitoring of this flow, and unceasing interactivity with the
software that is being continuously updated.

Liquid software is able to continuously update itself
because it’s simultaneously impacting and communicating
data from something that is already running and in use by
end-users. How those customers use and interact with their
software will evidence new demands, unforeseen limitations,
and other issues, which establish the basis for software to be
improved by way of adjustments or the addition of new
features.

While of course a discrete system undergirds it, liquid
software is made up of tiny pieces, like drops of water make
up the ocean. And there are so many of these pieces that it
becomes no longer possible for any single person to
distinguish individual components. The liquid software
revolution now taking place is the transition from transferring
packages to transferring micro-deltas of software. This order
of magnitude advancement in software DevOps is being
spurred on by a world that needs software (and software
companies) to be ever more responsive to market demands,
and disruptive of old (non-informed) ways of doing things.
Development, testing, distribution, and implementation
processes are getting faster and faster, with smaller and
smaller bits being delivered to more and more environments.

We have reached the stage where the creation, bundling,
transmission, and installation of big packages are
impediments to business growth and productivity. As well,
the ability of government, NGOs, and other service providers
to assist more people, and to operate more efficiently, is
restrained. This is keeping all of us from using and updating
everyday device software in what could be an almost
completely transparent manner. Our present experiences

L I Q U I D S O F T W A R E

10

make us desire a world in which continuous-and-seamless is
the norm. While most users are unaware of it, our collective
expectations are fueling the liquid software revolution.

This is not to suggest that we should plunge headlong into
this future, ignoring the challenges that liquid updates can
present. We can’t ignore the way we humans absorb changes.
There’s no sense or purpose in pushing modifications that
disrupt the present expectations of users. As ingenious and
cutting edge as we can be on the technological side of things,
we need to be every bit as clever in the ways we handle user
experience, change management, feature promotion,
training and support services, etc. Such concerns won’t apply
to every release, but they’ll certainly pertain to those that are
most likely to be disruptive. These, in particular, should be
thought of as design constraints that give us pause to
consider whether the adoption costs associated with an
improvement can really be justified. Optimally, new features
should be designed to be intuitive, requiring zero training;
they should feel natural, as if they’ve always been here, just
waiting for users to discover them. This approach will
improve performance and connectivity, and ultimately lead
to software that’s faster, more secure, and easier to navigate.

Chapt er 1 : The R oa d to D is ru pt io n

11

The Source (Code) of Liquidity
The drive toward liquidity is fueled by user needs and

desires as well as by the software developer community.
Much of this drive has come about because more developers
are becoming involved with open source projects. As these
people communicate and create code together, the nature of
the processes in which they are engaged represent a stark
example of how software can be developed more quickly and
in a profoundly more efficient and inventive manner than can
be accomplished in a tech firm’s office. These software
craftspeople – through their easy access to better tools at
home – have established the framework for how software
can and should be created, built, and distributed in the
future.

And let’s be crystal clear. We’re not waxing poetic about
the creativity of DevOps professionals, or positing academic
notions about efficiency. The liquid software revolution is as
much about return on investment as it is about radically
transforming processes. Companies create software to assist
customers to achieve goals, and if they get the job done right,
their bottom lines will reflect that success. Increasingly, doing
it right is seen as the adoption of small, efficient methods
pioneered in the open source community. Large software
firms are realizing that the path to better software and
greater profit is through the establishment of a continual
feedback process between their enterprise customers (and
end-users in general) and the software they are creating.
Building the pipelines (the liquid software infrastructure) and
the management systems for ongoing, continuous operations
can dramatically shorten the time span between perceiving
user needs that should be accommodated (or detecting bugs
that require patching), and making software improvements.
This overall improvement in quality, and the consistent
delivery of continuous improvements, will be rewarded.
Software companies that join the liquid software revolution

L I Q U I D S O F T W A R E

12

will see their costs decline and their productivity,
marketplace respect, and profits increase.

As we have seen with many innovations in many different
industries, change is not always immediate, nor is it always
rapidly embraced. Large software companies have
entrenched cultures and ways of doing business that often
have evolved over the course of many years. It’s frequently
not enough for an innovation to present itself as a great
creative idea or even a new approach that’s winning the
hearts and minds of the geek class. It’s the real, tangible
results being produced by liquid software revolutionaries that
are now motivating the industry as a whole to pay attention
to what’s happening, and in a desire not to be left behind, to
learn what they need to do to transform their own
operations.

An especially interesting aspect of the liquid software
revolution is the cross-boundary nature of the developer
community. Developers are moving from industry to
industry, sharing their knowledge and their craft with their
developer peers, whether those individuals are working in
the automotive, manufacturing, or retail world. It’s not about
a specific, industrial goal, but rather about how developers –
all developers – are creating software. We are now
experiencing a wave of cross-industry adoption of new
DevOps practices, tools, and technologies. It’s reached the
point where every industry – and even every company –
knows it must ride this wave. Those already on board are
benefiting from making the shift, and many others are
acknowledging the need to move in this direction.

When Software Starts to Wilt
Software is everywhere. And every company is a software

company. The trend toward the digitalization of anything and
everything is growing rapidly. This trend shows every sign of
continuing into the foreseeable future, and beyond. We see

Chapt er 1 : The R oa d to D is ru pt io n

13

this exponential growth particularly in the Internet of Things
(IoT), where devices, home appliances, automobiles, and so
much more, are already or are soon to become a part of our
“smart” world of electronics. People are becoming
accustomed to devices that respond to their behaviors, and
that respond situationally to the environments in which they
operate. In the coming new normal, the digital adjuncts of
daily life will routinely function in the ways individuals and
businesses want them to. In this new normal, users will
instinctively wonder why a particular functionality is not
performing as well as it might or is not available at all. This
need for software to quickly adapt to immediate
circumstances, and to practically intuit what will best serve
situations yet to come, cannot be adequately addressed even
at the current state of software evolution, where continuous
deployments are quite common, but continuous updates are
not.

The continuous deployment of software versions is often
seen today, particularly with mobile devices. Apps running on
these devices are frequently being updated, which is an
advancement that assures enhanced quality, as user needs
and software issues are being handled with increased speed.

L I Q U I D S O F T W A R E

14

However, for the most part, the actual changes from one
version release to the next are getting smaller and smaller.
Furthermore, the software being updated is generally
operating on a production runtime with existing data and live
requests. The liquid software revolution is intensely
concerned with the miniaturization of these updates –
creating the mechanisms by which improvements,
adjustments, and patches can instantly be incorporated into
running systems.

We might conceptualize this in terms of a bouquet of
flowers that we purchase to beautify a room. Once set in a
vase of water, our bouquet has been installed and deployed.
Through time and exposure to its environment, the bouquet
will change. The normal and anticipated process of aging and
decay will take place, making the bouquet less “functional”.
The useful life of the bouquet might be prematurely cut short
simply because one or two individual flowers within the
presentation become less attractive.

In this bouquet runtime scenario, what if we could make
the bouquet self-perpetuating? What if every time a flower in
that vase began to lose its appeal, it would instantly be
renewed? What if the vase’s water supply was continuously
replenished? We, the users of the flower arrangement, would
no longer have to tend to it. Everything would be done for us.
Our purpose would be served, and we could go about our
other business.

Chapt er 1 : The R oa d to D is ru pt io n

15

What might happen if this newfangled bouquet
technology – let’s call it eBouquet – was really a thing, right
now? It is likely that we would see the rapid adoption of
eBouquet and a decline in marketplace interest in the older
bouquet technology, and its innovations would become the
norm. This might well inspire the market to wonder what if,
instead of individual flowers in an arrangement auto-
rejuvenating themselves, those flowers could automatically
be replaced by different flowers. Maybe the arrangement
could be programmed to slowly morph into a new
arrangement. The new one might be more appropriate for a
particular occasion or time of year. We could well imagine
many more conceptual variations.

This metaphor illustrates something inherent in the
human condition. Sure, necessity is the mother of invention

L I Q U I D S O F T W A R E

16

– but some of the world’s most interesting, compelling, and
useful advances have come from creative minds giving people
things they never knew they wanted. At minimum, those
innovators tapped into a general (sometimes unarticulated)
sense that if we can already do one thing well, surely we
should be able to do something else that builds on how far
we have come.

It is precisely the same with software. The further down
the road we go in terms of what software can do for us, the
more intense is our desire for it to do more. This is a perfectly
normal impulse. How often and in how many different ways
since the Industrial Revolution has some grand innovation
inspired people to exclaim, “I can’t imagine how we lived all
this time without [insert new wonder of the world here]!”

We’ve arrived at a moment in time where our
expectations and assumptions about what software should
do demand that we move beyond the deployment and
lifecycle of traditional “bouquets”. Greater progress and
convenience intensify the desire for more of both. Users
increasingly believe that their devices should operate in
certain ways and that particular functionalities should be
rapidly available to them as a matter of course. It will be
impossible to make those beliefs manifest without
continuous updates.

Naturally, before we can know where we are heading, we
have to understand where we have been.

DevOps Rules! (At Least It Should)
The sudden, gargantuan demand for IoT devices has

revealed just how far away we are from being able to deliver
seamless, responsive, flexible, almost intuitive continuous
updates. At present, most IoT devices have very low update
rates. While the firmware in smart watches and fitness
trackers may be updated every few weeks, updates are fewer

Chapt er 1 : The R oa d to D is ru pt io n

17

and farther between for smart home HVAC systems, smart
TVs, health monitoring equipment in hospitals, and NASA
space vehicles. Additionally, there are substantial issues
related to security and trust, with failures occurring regularly.
Hackers seeking to establish new and improper gateways to
the Internet are routinely attacking IoT devices. In some
instances, hacks are shockingly simple to execute, including
some that cannot be reversed through a software patch,
requiring customers to send their devices away for dedicated,
hands-on, professional care.

Confronted with this, some manufacturers have chosen
to hide behind the expectations people have of hardware
refresh cycles, which are far less demanding than software
update cycles, never mind continuous updates. These
companies know that problems exist and that the bad street
buzz generated by these problems is costing them business.
So, what do they do? They either make it so inconvenient to
update device software that users don’t bother, or they stop
providing updates altogether. Consider a smart TV that offers
an update as an app is being launched, but allows the user to
skip the update and launch the app anyway. The message on
the screen doesn’t explain what’s in the update, why it should
be installed, or how it could be installed when the TV is not
being used. In this scenario, the odds are high that the
average user will close the update message and go back to
what they were doing.

Of course, this is not a practical solution in the short term,
nor is it a sensible one in the long term, because the pressure
to update will remain and only get stronger by the day.
There’s a tremendous tug of war going on now between end-
users desiring the immediate ability to connect IoT devices to
one another and to other networked devices, and the fact
that the updates these devices receive are still not secure,
transparent, or reliable. Moreover, even if we could tag an
update as secure, a security flaw might be discovered

L I Q U I D S O F T W A R E

18

following release, with no mitigation option possible other
than a patch or a dreaded device recall. All of this leaves
software manufacturers only one prudent option – to
embrace the liquid software revolution.

The transformation we envision isn’t the acceptance of
continuous updates as an abstract notion. A company can
affirm the wisdom of moving in this direction and still fail in
the effort if it does not also restructure internal systems and
practices. Currently, most IoT developers and the IoT
community that is creating the software for these devices are
not DevOps personnel with a DevOps mindset. They bear the
heritage of hardware producers accustomed to investing
lengthy periods of time in production. They believe that any
post-production updates, such as patches, can be inherently
risky and are to be avoided. For many, DevOps is still a new
concept. Still, whether through training, conferences, trade
publications, peer or market pressures, DevOps must be a
part of every IoT firm’s business plan.

This should not be a tremendous hurdle to overcome. It’s
just applying to IoT environments and systems the same
processes and techniques that are already in place at big web
and web server companies. Among other things, it’s creating
QA testing tools, build tools, validation tools, promotion
tools, signed software pipelines – indeed everything that is
discussed throughout the book you are now reading.
Nevertheless, some will need a little added incentive to get
them to where they need to be; where sturdy, bottom line
business sense dictates that they ought to be.

Consider this: In 1993, AT&T launched a series of
sophisticated television ads, all of which posed provocative,
“Have you ever…” questions, such as “Have you ever watched
a movie you wanted to, the minute you wanted to?” “Have
you ever kept an eye on your home when you’re not at
home?” and “Have you ever carried your medical history in
your wallet?” The tag line for each of these commercials was,

Chapt er 1 : The R oa d to D is ru pt io n

19

“You will.” And of course – every one of those prophecies
have come to pass.

We’d like to be just as clear and direct: DevOps is not the
future. It’s here! It’s now! And it’s not going away. Yes,
making the shift is an investment and is not to be taken
lightly. But neither is it to be ignored. Every software firm,
every CEO, every business development executive, and every
operations manager owes it to their company, their board,
their investors, their employees, and their clients to be
curious about DevOps. They should devote some reasonable
amount of time to the subject, and seek out those with the
knowledge and experience to assist them in getting up to
speed with what DevOps is all about. Those who do may well
discover that DevOps is something they can’t afford not to
embrace. They might even be stunned to realize that the
benefits can be staggering when theirs is the company
providing users with products that have the built-in solutions
and the in-house know-how to reliably, continually improve
lives.

We Built It, But They Didn’t Come
Need still more encouragement? Well, consider the fact

that secure and highly accurate updates are already being
delivered through automated systems all the time. It’s being
done to practically every commercial airplane on the ground
for servicing, to sophisticated warehousing and logistics
operations, and to many modern automotive systems. Even
NASA’s Mars rover, Curiosity, received a full system upgrade
from a distance of almost 140 million miles.

L I Q U I D S O F T W A R E

20

Of course, the fact that we have the wherewithal to do
the job right doesn’t always mean the job is done right. Are
there examples of mishaps and failures? Certainly. But those
aren’t reasons to slow down the progress of the liquid
software revolution and the promise of continuous updates.
Rather, we should be working in an organized and resolute
fashion toward globalizing and standardizing. We should be
communicating to the entire software industry that updates
are not something to be considered after the fact. Updates
should always be part of the code that is written right from
the start. Our watchcry should be: “If it’s not updateable, it’s
not software!”

We firmly believe that the liquid software revolution will
succeed in making continuous updates the norm throughout
the industry. Yet we do understand that we’re currently
travelling through a sort of middle passage. Much of the
software we all currently use (web-based and mobile apps) is,
in fact, being continuously updated. These are the updates
we never really think about. We see them, but their inner
workings are completely transparent to us. Almost all the
websites we interact with are continuously being updated,
and most mobile device apps receive automatic updates, but

Chapt er 1 : The R oa d to D is ru pt io n

21

the majority of users don’t pay much attention to this. In
other words, on a daily basis, users are already getting what
they want and prefer – optimally functioning software with
the latest feature and security updates, delivered without
their having to be involved in the process. Yet for most
people, the penny hasn’t completely dropped. Most haven’t
quite reached the stage where they’re wondering (or
complaining) aloud about continuous update technology not
being everywhere yet. Perhaps there would be more pressure
from the market if the market was crystal clear in
understanding that it could have what it wants at a
significantly accelerated pace – if it would just make some
noise about it. Perhaps we need to launch a high-profile
advertising campaign with the tag line: “Ask your software
provider if continuous updates are right for you!”

Whither Software Versioning
Throughout modern software history, localized

installation and updating events have taken place in specific
places, such as homes and offices, and on specific devices,
such as PCs, laptops, servers, and mobile devices. New
software and subsequent updates are assigned version
numbers, which help to catalog the precise composition of
any particular release of a given piece of software. These
numbers are intended to highlight specific issues addressed,
functionalities introduced, and patches applied. This
paradigm is still very much with us today, although things are
changing.

Change is evident across the landscape of mobile device
apps. Many popular high-profile apps receive small updates
as often as every few days. Significant change is also being
driven by the fact that distributed software is becoming more
common. What once was a component part of a software
suite installed and running on a localized device may now be
executed as a microservice that a user accesses and executes

L I Q U I D S O F T W A R E

22

in the cloud. In this environment, individual microservices can
be updated discretely according to their own independent
release cycles, with no need for their deployments to be
bundled into a larger package of updates with a specific
version number. Although each “micro-update” alters an
aggregated macro version of a given piece of software,
traditional version numbering is no longer an effective or
meaningful way to reflect each and every minute change that
takes place. This trend is dramatically on the rise with IoT
introducing more new devices that are connected to the
internet, the updating of which can only be efficiently
managed through automatic updates requiring no human
intervention.

The average user’s awareness of software versioning is
waning. Most software companies have embraced the fact
that the vast majority of people care only about functionality
and convenience. Whether for work or for leisure, users want
to interact with the software in their lives only in ways that
will help them to accomplish their goals. They want to use
software, not tend to it. They certainly don’t want to have to
pay attention to its technical dimensions.

Chapt er 1 : The R oa d to D is ru pt io n

23

Machines, not humans, need to do the logging and
tracking of version numbers and software updates. They must
be able to manage and adjust to a continuous liquid flow of
very small packages that are continually updating software.
Machines must monitor the impact such updates are having
on the larger systems software operates within.

Versioning was created to assist professionals to better
manage software updates. Machines, however, are more
versatile at such management, as they have faster and better
means of archiving and retrieving information. Machines can
create versions of software packages, libraries, and
applications. They can generate version numbers from many
branches in parallel, and then, based on a machine-readable
version, combine discrete packages into running software.
And unlike humans, they have no need for text files detailing
all the many versions of a piece of software that have been
installed and updated on a particular platform or system.

Users and developers may not be expressing a desire for
liquid software, because they are still unfamiliar with the

L I Q U I D S O F T W A R E

24

term. They may not articulate a desire for continuous
updates, but are nevertheless eager for the benefits of
automation. As it is now, most users do not upgrade major
software packages, particularly computer operating systems.
This is due in part to their fear of being involved in processes
they believe are too technical or complicated. This fear
persists even though software manufacturers have taken
great care to make these experiences as simple and
straightforward as possible. Most people are not confident
that they possess the necessary knowledge or skill to handle
such upgrades. Even those with some amount of savvy have
learned (through rumor, if not experience) that it is often
better to hold back on installing major upgrades, since initial
releases have been introduced to the marketplace when they
were less than ready for prime time.

This brings us back to what most people would prefer. In
principle, most would very much like to have the latest and
most improved versions of the software they use. However,
they want by the best technicians. They want to be able to
trust that what gets delivered to them has undergone
appropriate testing and validation. They want to securely
receive updates that will work properly and cause little or no
disruption to their daily activities. Only machines are best
equipped to satisfy all of these preferences.

Isn’t Continuous Deployment Enough?
Right now, the answer to that question will depend on the

end-user. With every passing day, however, the answer will
increasingly be “no”. We have already addressed the fact that
software is everywhere and that IoT is exponentially
reinforcing this. There are enterprises that require their
software to be operational around the clock, and many
average users want the same convenience. Only continuous
updates can deliver on these demands and desires, as only

Chapt er 1 : The R oa d to D is ru pt io n

25

liquid software can provide continuous updates with zero
downtime.

Another advantage afforded us by continuous updates is
the opportunity to execute the odd-sounding, but very
practical task of continuous downgrade. This option is highly
relevant if, while a firm is running a critical operation, it
suddenly detects something very wrong in a particular
process. If an update had been delivered through continuous
deployment, the company might be facing serious downtime
and disruption of service. But the continuous downgrade
procedure allows a rollback to be executed as seamlessly as
an update. In a manner of thinking, it’s not so much a
downgrade as it is just another update, but this update is
delivering a previous version of the software.

From Solid to Liquid
The demise of software versions – at least insofar as users

are concerned – is already underway. And the degree to
which it’s happening parallels user confidence in the products
and updates coming from software vendors. We see this with
routers and self-updating IoT devices, and particularly with
smartphones and tablets. The average user doesn’t know (or
care) what version of YouTube, WhatsApp, Amazon Echo, or
Google Home is running. There are versions, but for all intents
and purposes, they remain hidden. This information is
pertinent to machines, not humans.

L I Q U I D S O F T W A R E

26

So, we are all receiving and accepting app updates on
almost a daily basis – most without the necessity for any
intervention on our parts. We have confidence, at least, that
software vendors are making sure that these app updates are
not going to damage our devices or corrupt our personal
data. The more we experience this (mobile devices and their
apps serving our needs), the more we’ll all be comfortable
with updates taking place without our noticing.

Leaps of Faith
On our mobile devices, we typically allow app updates to

be installed even when we know there will likely be no option
to execute a rollback if something goes wrong. There’s no
user-side device testing of new version releases. They’re
placed directly into production with no acceptance tests
needing to be run on the side. No one has a standby phone to
use for the installation of new software updates.

Essentially, we’re all taking an informed risk.

The risk most often encountered by running a new
version of software is the loss of a functionality that we have
enjoyed or relied on. Perhaps an app won’t start at all
because the device on which it’s running has a new operating

Chapt er 1 : The R oa d to D is ru pt io n

27

system that doesn’t match the new version of the software,
or the software has some other bug. Even under these
circumstances, we generally don’t send complaint messages
to software vendors about problematic app updates. Our
experience has led us to expect that the vendor will deliver a
fix as soon as possible. And we’re willing to incur what is
rarely more than a slight disruption, even if it’s quite
inconvenient while we wait for the solution to arrive.

Enterprise Users: To Boldly Go…
It is possible that a user may end up with a completely

malfunctioning device as a result of choosing to upgrade its
operating system. For enterprise customers, however, the
level of voluntary risk is, for the most part, very different. It is
much more common for them to have staging servers that
can test and assess the impact of upgrades. A compelling
argument can be made that when the enterprise user
eventually does receive a given software update, they can
have a reasonable sense of security. And while most of the
time this is justified, nothing’s totally foolproof. Problems can
definitely be revealed during staging that might not
otherwise be detected. The critical factor is whether an
enterprise user is well prepared to predict production
problems that may occur during staging.

This places enterprise users in only a marginally better
and safer position than the phone user who simply accepts
any updates (whether automatic or manual) that are being
fed by vendors. And while enterprise users may be able to
validate some updates, they can’t validate every single one.
This means that, at best, new versions of enterprise software
have only limited and inconsistent opportunities to be tested
with real-world production loads. This places intensifying
pressures on software vendors from both the consumer and
enterprise segments of the market. Both groups are

L I Q U I D S O F T W A R E

28

demanding trustworthiness, and that means vendors must
ratchet up their game when it comes to validating software.

Further risks are incurred with our growing need for
speed, which is fueled by the mindset and expectations of
individuals in relation to their mobile devices. People are
already experiencing just how quickly they can receive bug
fixes and new features. So, it’s natural for these same people
not to understand why smooth and speedy updating cannot
occur in the enterprise environment. Large firms may have
the facility to carry out client-side validations that can also be
automated and included as part of business-to-business,
liquid software flows. However, once again, the fundamental
issue here is for vendors to establish continuous update
infrastructures capable of validating each and every update
through necessary and appropriate testing.

A critical mass of everyday experience is pushing all levels
of DevOps toward liquid software. Regardless of the software
being run, regardless of the environments in which it’s being
run, regardless of the devices on which it’s operating,
regardless of whether the end-user is an individual or a
corporation, we all want fluid and continuous updates.

To rapidly produce new features, bug fixes, and updated
versions – few of which are overtly tangible anymore – we
need to expand software capacities at a pace that is not
possible to achieve via traditional updates.

It’s Right Here in Front of You
Elements of a continuous update architecture do exist

presently in large web application companies, such as Netflix,
Apple, Google, Facebook, Amazon and Twitter. In these firms,
from Docker to data center to website, liquefaction is all
internal and based on proprietary systems. However,
software that these companies consume from suppliers

Chapt er 1 : The R oa d to D is ru pt io n

29

outside of those systems, as well as the software that these
firms supply to external partners, is not fully liquid.

The main issue here is that DevOps is still dealing with a
lot of large application packages that are not liquid. They are
continuously deployed, with updates coming in the form of
transfers of a lot of data and replicated services. To achieve
full liquidity, continuous update systems must be able to
execute continuous updates of libraries, and this will require
having the concept of libraries nested within end-user
devices. The way updates are currently delivered –
duplicating full applications and data – is a huge waste of
storage and network resources. So, once again, it’s IoT that
will benefit most from this focus on library updating and it’s
IoT that will accelerate the liquid software revolution. From
advancements in IoT, the mobile device marketplace will
catch on, with significant effort concentrated on continuous
updates for cloud-distributed apps. Successes on these fronts
will then spread across the entirety of the software
development spectrum.

Flight Risk?
“Passengers, this is your captain speaking. We’ve reached

a cruising altitude of 30,000 feet and in just a few minutes,
we’ll commence a software update of this airliner’s major
flight systems.” Upon hearing such an announcement, most
people might pause momentarily while absorbing the
information, and then reactions could range from mild
disquiet to panic.

So, let’s start with the obvious question: Why the heck
would anyone want to do this with an airplane, en route,
carrying several hundred souls? Surely the risks involved
outweigh any potential benefit? Well, before we address
these questions, it should be noted that it’s quite common
today for airline companies to execute software updates for
non-critical systems while their planes are on the ground

L I Q U I D S O F T W A R E

30

(e.g., in-flight entertainment services, Wi-Fi, corded phones,
and mobile device connectivity).

Let’s return, though, to our “scary” scenario and consider
a bit of context. The U.S. Federal Aviation Administration
(FAA) has been working with the airline industry for several
years toward the implementation of a collision detection
system update. The concept is to use high-level GPS instead
of radar systems to track the precise location of all planes in
the sky. The coordinates provided by the GPS system would
allow for significantly improved management of flights,
enabling more planes to take off and land, particularly those
that service crowded urban hubs. However, this kind of
technology opens up the possibility that further down the line
a malicious GPS spoofing hack could be discovered in GPS
processing software. The upload of such bad data could
penetrate an airplane’s software systems, giving a bad actor
control of the aircraft. An in-flight software update could
avert a potentially catastrophic event by removing the
vulnerable GPS processing software. After an event like that,
proponents of never updating software when a plane is flying
will have a hard time arguing their case.

If You Love Control, Set It Free
As we’ve established, with the ongoing and exponential

rise in software-driven, software-managed, and software-
monitored, well…everything, we have an increasing need for
speed. But speed is not enough for the liquid software
revolution to succeed. Current technologies allow us to
rapidly accomplish a huge amount within the continuous
updates arena, but we also need to establish rock solid
reliability and trust in update pipelines and the data that
flows back and forth between them. This is what substantially
distinguishes continuous updates from continuous
deployment. We typically speak of continuous deployment in
terms of pushing deployments to data center and production

Chapt er 1 : The R oa d to D is ru pt io n

31

system runtimes that are strictly under local control. As such,
within many systems, we have a high level of control over the
runtimes in which the software will be executed. Liquid
software greatly expands the horizon because we are dealing
with runtimes that can be pushed to or pulled from as part of
a continuous update environment. This means we must
continuously deal with runtimes that are outside of local
control. When it becomes the norm for software developers
and firms to confidently let go of this local control, we’ll know
that the liquid software era has truly arrived.

Just Sign on the Dotted Pipeline
For all that we can accomplish right now in terms of

continuous updates, there are still challenges ahead. For
example, API security standardization remains an issue to be
overcome. In an optimal liquid software environment, the
signing authority for certain types of software certification
would be automated. We would be able to establish that a
specific version of a specific package has been tested and
validated by ABC, and passed; integration tested by XYZ, and
passed; security tested by another entity, and passed. The
same would occur down the line for validations of End-User
License Agreements (EULAs), release and customer
relationship notes, and so forth. This is yet another aspect of
the engineering of completely trustworthy, worry-free
pipelines. Customers wanting to obtain the latest client
library and correct routing could then do so with total
confidence and with full knowledge that the liquid software
they receive has been properly certified and signed by all
appropriate entities. The customer could then implement an
automated filtering system that filters software inflow, such
that they’ll be receiving only that which they want. To
accomplish this goal, we must build an infrastructure that
establishes not only liquid communications, but also trust,
between companies. This could come about through the use

L I Q U I D S O F T W A R E

32

of certified signatures that are associated with specific types
of update clusters.

Such solutions could even extend to self-driving cars,
trucks, and other autonomous vehicles. However, as we
might imagine, there is enormous resistance to the notion of
executing continuous updates in this realm, and this
resistance will likely persist for some time. While it is true in
a general sense that such updates would be no different than
any others, reluctance to liquefy the software governing
these systems is based almost entirely on the potentially
lethal results should anything go wrong.

Chapt er 1 : The R oa d to D is ru pt io n

33

Nevertheless, there are some current examples – Tesla is
notable – of automatic updating of vehicles’ self-driving
features. The only difference is the amount of quality, or
responsibility for quality, the vendor assumes. Some of this
has to do with legal obligations and liability issues with
respect to precisely who is responsible for certifying and
provisioning an update. Since Tesla owners are not aware of
liquid updates occurring, they cannot be held wholly
responsible for a malfunction or an accident that is the result
of an update. Software consumers don’t have the knowledge,
skills, or facilities to ascertain whether one version or another
is sound and ready for deployment, nor can the owner
execute appropriate and necessary rollbacks. All of that must
be the sole responsibility of the vendor.

We want to state clearly that despite the fact that
transportation and other high-risk industries may be averse
to continuous updates, it is our belief that firms that don’t
embrace the liquid software revolution by implementing
methodologies and systems to guarantee the quality,
security, and provenance of their software, could be destined
for quick demise.

We Want Information, Information, Information…
Metadata is the information that allows us to make

sensible decisions about whether a piece of software and all
of its component pieces are good or not. It might be metadata
about the origin of a particular component, the history and
features of a particular version, or validation steps that
software went through – all of this and much more is critical
information for a well-designed, automated pipeline.
Metadata enables us to determine whether our software
should or should not be promoted to the next level in a
continuous integration pipeline. There’s internal metadata
related to our own projects, internal metadata related to
other projects that we use as libraries, and external metadata

L I Q U I D S O F T W A R E

34

related to all the components that we use. Because of the
number of sources from which it can derive, our metadata
can indeed be quite meta!

Ours is an age of binaries. With every software industry
advancement, we’ve seen an exponential rise in the
production of binaries. There are billions, if not trillions, of
them now in play, with unknown numbers yet to come.
Consequently, we emphasize in several sections of this book
how and why copious amounts of highly targeted metadata
are critical to the rise of the machines and the eventual
success of the liquid software revolution. It’s only through the
robust use of metadata that we can make any sense of this
vast and growing sea of artifacts. And for each artifact, we
must answer questions that fall into three essential
categories:

1. Basic information: What is it? Where did it come
from? What we can do with it?

2. Location: What do we have, where? We have a
multitude of environments – QA, pre-production,
production, etc. With artifacts in every environment,
we need to understand why they are where they are.

3. Quality: What validation did it go through and what
were the results? Were Common Vulnerabilities and
Exposures (CVEs) or any other bugs revealed? Was it
tested internally? How did its performance test
results compare to other versions of the same binary?
In a continuous update system, artifacts will be
generated from several different environments.

We need answers to these questions so we can make
smart decisions about what should progress through our
liquid software pipes at the processing phase. We must
decide what should be deployed where vis-à-vis the
environment from which an artifact was created.

Chapt er 1 : The R oa d to D is ru pt io n

35

It will be possible to address these issues only if we have
enough metadata. But just how much is enough? To answer
that question, let’s examine security concerns related to
metadata, such as CVE identifiers. And let’s pretend we have
an ultimate, magical solution. With a wave of our digital
wand, our machine learning algorithms and big data analytics
scan our source code and determine whether there are any
security breaches that others might be able to exploit. Is this
enough? No. Why not? Because modern software
development includes software that is composed from
different open source components. To be certain our code is
secure, we cannot simply analyze all of our own source code,
we must have confidence that third-party components are
secure as well.

This is true for every aspect of metadata. For example, we
can test our code for performance. We can use benchmarking
tools and application performance management (APM)
systems to discover if a component we’ve just written is
performing well enough to go to production. Is that enough?
Once again, the answer is no. We need to know about the
performance of all the components we use – those coming
from other teams in our organizations, as well as those
coming from third-party sources.

The same type of thinking applies when it comes to
licenses or any other aspect of the architecture of the
software we produce and distribute. And we need to be
mindful of how quickly things can and will shift in the world
of software development. For instance, at one moment in
time, we might incorporate a particular company’s third-
party libraries as a login component. Just because that
company’s product is good today doesn’t mean it will be good
tomorrow. Perhaps a new CVE about a fatal security flaw will
be discovered; perhaps the provider won’t be able to keep up
with the pace of innovation; or perhaps some competitor will
come out with a product that’s better. And maybe we’ll

L I Q U I D S O F T W A R E

36

decide to switch to another provider, only to discover later
that our original provider has made improvements sufficient
for us to switch back. If we’re reliant on third-party solutions,
we need to be paying attention, and making decisions
accordingly.

“Your Data Security is Important to Us”
At present, if we want to check whether an artifact is

vulnerable, we can rely on a number of good informational
resources. One that is particularly helpful is the National
Vulnerability Database (NVD), a service of the Information
Technology Laboratory (ITL), operated by the U.S. National
Institute of Standards and Technology (NIST). However, as of
yet, there is no single repository of information that can
address all of the questions we might have about all software
components.

Regardless of which database we might use, we have a
more fundamental question: How is a given artifact to be
identified in any particular database? If there are no
standards, how can we know if an inquiry we submit has been
conclusively answered? A mistake here can impact the data
security of millions of people. This might be what happened
in 2017 to the consumer credit reporting agency, Equifax. A
data breach occurred that exposed the sensitive private
information (names, dates of birth, social security numbers,
etc.) of over 145 million U.S. consumers. It also resulted in
over 200,000 credit card numbers being illegally accessed.

So, what happened?

Equifax had built a container to store all of the personal
identifying information (PII) of its customers. The company
used a third-party resource to do this – Apache Struts 2 – a
free, open source, and (as it turned out) quite vulnerable Java
library. The firm wasn’t necessarily wrong to use Struts 2.
After all, it had been embraced by the software industry for

Chapt er 1 : The R oa d to D is ru pt io n

37

almost a decade. A significant majority of websites written in
Java had been using Struts, making it a de facto standard
during that period.

By early 2017, however, Struts 2 was no longer the best
available web framework in the marketplace. It had become
a legacy resource and was on its way out, not least because it
had racked up a history of security vulnerabilities. According
to the Common Vulnerability Scoring System (CVSS), since the
debut of Apache Struts 2 in 2007, fourteen of its
vulnerabilities had rated hair-on-fire scores of 9 or above (on
a scale of 10). Apache released a patch for the fifteenth such
vulnerability – which had achieved the dubious distinction of
a “perfect” CVSS 10-score – in March 2017. Disastrously,
Equifax wasn’t paying attention. Two months went by and the
company still hadn’t applied the patch. By May 2017, Equifax
was so vulnerable that the breach it suffered was the
cyberattack equivalent of punching a fist through a
decorative Japanese room divider. Data flowed out of its
systems over the course of several weeks, ultimately costing
the company and its insurers hundreds of millions of dollars.
In the aftermath of the fiasco, firms that had still been using
Struts 2 abandoned it in droves.

Universalizing Metadata
Much has been written and said about what happened at

Equifax. But is it a given that a simple dose of due diligence
will always be the perfect path to avoiding catastrophe? Let’s
say that right now we want to determine the current
vulnerability status of Struts 2. We could visit the National
Vulnerabilities Database. How should we search for it there?
Should we enter its name as Struts 2, struts2, or Apache Struts
2? Should we enter its SHA1 checksum, it’s GAV coordinates
(org.apache.struts:struts2-core), or should we use some
other type of identifier? What if we don’t find anything on the
NVD? How should we carry out a search in another database?

L I Q U I D S O F T W A R E

38

Is there any way to perform a crosscheck? Maybe it’s
registered with some databases and not others.

So we have several big problems. First, when we want to
perform a search, there’s no place for “one-stop shopping.”
Second, regardless of where we go, the data we’re seeking
might not be available. Third, if the data is available, there’s
no uniform methodology for querying the components we’re
using. But with so much metadata being generated from so
many different sources, we might begin to think that this is all
getting to be a bit too complicated. It is. That’s why, as part
of the liquid software revolution, it will be wise to standardize
the methodologies through which metadata is generated,
transferred, and read.

We understand that many in the software industry react
to the idea of standardization with trepidation, because past
attempts at developing standards have not been very
successful. This is not because there are serious
disagreements about the benefits of establishing standards.
And it certainly isn’t because the industry lacks the talent or
inventiveness to create useful standards. It’s that in too many
instances, even where consensus has existed that
standardization would be helpful, when a dozen different
entities created the needed “standard,” instead of simplifying
the situation, things only became more complex.

The Solution: A Metadata Scribe
In late 2017, an open source initiative called Grafeas (the

Greek word for “scribe”) was launched, its objective being to
“define a uniform way for auditing and governing the modern
software supply chain.” Grafeas would like to gather
metadata about everything through the implementation of
an industry-accepted common model for sharing metadata
about software artifacts and releases. The concept envisions
acquiring and pooling metadata from both internal and

Chapt er 1 : The R oa d to D is ru pt io n

39

external sources, in order to construct a more complete
picture about components in circulation and use.

In practical application, NVD can expose this data in
Grafeas format, which renders it universally understandable,
particularly to machine-driven platforms and systems.
Metadata can be tagged with a mutually agreed upon
identifier, such as a checksum of an artifact, which can then
be compared with all known checksums and all known
vulnerabilities. Thereafter, Grafeas can provide a response in
the form of an adjacent file that can flow through continuous
update pipelines. A given file might indicate that we have
encountered instances of particular vulnerabilities. In an
automated system, this would trigger a block, which would
prevent the problematic artifact from being further
promoted in a production or distribution pipeline.

While this central database of vulnerabilities is the most
obvious example of what Grafeas can do, the possibilities are
enormous. For example, when handling metadata that’s
internal to a company, we will typically see separate divisions
and different teams sharing metadata. But let’s say that one
particular firm is using a component that is completely
internal, and the outside world doesn’t know it exists. Under
normal circumstances, this component would never appear
in any external database. However, through the use of a
Grafeas-compatible source code security analyzer, we might
be able to detect a pattern in that component’s code that
could present a security vulnerability. Again, Grafeas can
provide a response in the form of a metadata file that streams
this information inside an organization. Then, whenever an
automatic pipeline needs to vet artifacts for security
breaches, it will receive a uniformly formatted document,
with the same exact metadata from the outside database and
the inside source. This will help it to ban artifacts, as
appropriate, whether they’re based on Struts 2 or an internal

L I Q U I D S O F T W A R E

40

component that’s just been revealed to contain some
suspicious looking source code.

The Grafeas initiative is encouraging a dramatic increase
in the production and use of metadata. As we have said
several times, metadata is the key to continuous update
success. Metadata should be registered for every action we
take in development and should be consulted in every
decision that needs to be made in production and promotion.
We should produce metadata at every phase of continuous
integration, starting from the build server. We should log
information regarding how a particular artifact was built, who
initiated the build, what the environment variables were,
which versions of system dependencies were used, how long
the build took, and so forth. Following this, we want
metadata regarding QA. For example, as we perform unit
tests, we should register whether our artifacts have passed or
not, and whether the tests triggered any concerns or
warnings. The same should hold true for recording
integration test metadata, as we will want information to
verify stability or alert us about instabilities. We should
gather and register metadata equally about every test we
perform. Since we cannot be certain about the future and
what information we might need – let alone information that
can help us avoid a calamity – the gathering of copious
amounts of metadata should become routine across the
industry.

A World in Which Grafeas Data is Everywhere
Grafeas is unique in that it acknowledges a reality in

today’s software industry – the existence of complicated use
cases, where software includes components from internal
and external sources. Grafeas is designed to be able to mix
and match the metadata arising from both. Depending on the
nature of what we’re building, we might integrate
information from various components that we’re using. In

Chapt er 1 : The R oa d to D is ru pt io n

41

such situations, external metadata can become part of our
internal metadata. Conversely, we might have internal
metadata published in in-house databases. If we begin to
work on an open source library, we might want to disclose
our internal metadata to public metadata sources, so others
could benefit from this information.

With increasing amounts of metadata, we will create
opportunities to check and recheck our components before
they are deployed to runtime servers. One example of this is
an initiative called Kritis (Greek for “judge”), a rule engine for
Kubernetes that operates on Grafeas metadata. This tool will
allow us to write rules to direct the execution of a final pre-
deployment check. If the check encounters any security
vulnerabilities, the rule will direct the system not to move
forward to deployment.

The Kritis project is an acknowledgement of another
reality of modern software, which is that components that
have already been tested as stable and secure today aren’t
guaranteed to remain in that state tomorrow. We might have
a component that’s been in production for two years, and
then suddenly discover there are vulnerabilities in every layer
of our dependencies. Obviously, this would require us to take
action on artifacts that are already in production. We want
the software industry to evolve to the point where liquid
software is automatically pinging Grafeas-enabled metadata
databases at regular intervals (say, every 24 hours or less) to
make sure that something we’ve verified at one point in time
is still secure a bit further down the line.

The Grafeas metadata description initiative seeks to
establish universality in the way we register queries about
components, and to standardize the format of responses
returned from those queries. It’s important to note, however,
that any tools using this format must be adjusted individually
by the companies that produce them. Grafeas doesn’t

L I Q U I D S O F T W A R E

42

maintain any centralized service, nor does the project intend
to acquire and centralize existing databases.

If Grafeas is successful, it might well become an integral
and indispensable part of the liquid software revolution. This
would certainly be the case if, eventually, continuous update
pipelines can issue standardized Grafeas requests to the NVD
and other vulnerability databases, and receive standardized
Grafeas responses that can be parsed automatically. Under
such a scenario, decision-making regarding whether we want
our artifacts to proceed in a given pipeline or not would
become decentralized, and therefore much simpler and more
secure.

ABOUT THE AUTHORS
Fred Simon

Fred is an avid software visionary with over 25
years of hands-on open source coding
experience. He is a co-founder and the Chief
Architect of JFrog, the DevOps accelerator
company. He was also the founder of AlphaCSP
– a Java experts consulting firm that was
acquired in 2005. As a community influencer,
Fred has been part of the most challenging

changes in the software industry and has led Fortune 500 companies in their
transition to DevOps. In 2015, Fred envisioned a world in which software is
“liquid” and revealed the driving force behind the DevOps Revolution:
Continuous Software Updates.

Yoav Landman

Yoav is a devout engineer, the creator of
Artifactory, and a co-founder and Chief
Technology Officer of JFrog. With over 20 years
of experience as a Software Architect of
enterprise applications, he plays a significant
role in the evolution of DevOps. In 2006, Yoav
created Artifactory as an open source project
paving the way for the software community to a

new domain of managing binaries. Prior to JFrog, Yoav created many
production solutions as a consultant in the fields of Continuous Integration
and Distributed Systems. He is also an accredited speaker and a Java
Rockstar.

Baruch Sadogursky

Baruch is a vibrant and passionate advocate in
the software development community. He is
known as a champion in vocalizing key technical
problems and offering inventive solutions in the
high-tech industry. Baruch has been a software
professional, consultant, architect and speaker
for almost 20 years. He has been JFrog’s
Developer Advocate since 2012. Prior to JFrog,

Baruch was an Innovation Expert at BMC Software and a consultant and
software architect at AlphaCSP. Baruch is a Cloud Native Computing
Foundation Ambassador, an Oracle Developer Champion, a Java Rockstar
and a leading DevOps evangelist.

